Abstract

Metallic conductive 1T phase molybdenum sulfide (MoS2 ) has been identified as promising anode for sodium ion (Na+ ) batteries, but its metastable feature makes it difficult to obtain and its restacking during the charge/discharge processing result in part capacity reversibility. Herein, a synergetic effect of atomic-interface engineering is employed for constructing 2H-MoS2 layers assembled on single atomically dispersed Fe-N-C (SA Fe-N-C) anode material that boosts its reversible capacity. The work-function-driven-electron transfer occurs from SA Fe-N-C to 2H-MoS2 via the Fe-S bonds, which enhances the adsorption of Na+ by 2H-MoS2 , and lays the foundation for the sodiation process. A phase transfer from 2H to 1T/2H MoS2 with the ferromagnetic spin-polarization of SA Fe-N-C occurs during the sodiation/desodiation process, which significantly enhances the Na+ storage kinetics, and thus the 1T/2H MoS2 /SA Fe-N-C display a high electronic conductivity and a fast Na+ diffusion rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.