Abstract

Progress in common bean breeding requires the exploitation of genetic variation among market classes, races and gene pools. The present study was conducted to determine the amount of genetic variation and the degree of relatedness among 192 selected common bean advanced cultivars using 58 simple-sequence-repeat markers (SSR) evenly distributed along the 11 linkage groups of the Phaseolus reference map. All the lines belonged to commercial seed type classes that are widely grown in the USA and include both dry bean and snap beans for the fresh and processing markets. Through population structure, principal components analyses, cluster analysis, and discriminant analysis of principal components (DAPC), Andean and Mesoamerican genotypes as well as most American commercial type classes could be distinguished. The genetic relationship among the commercial cultivars revealed by the SSR markers was generally in agreement with known pedigree data. The Mesoamerican cultivars were separated into three major groups—black, small white, and navy accessions clustered together in a distinct group, while great northern and pinto clustered in another group, showing mixed origin. The Andean cultivars were distributed in two different groups. The kidney market classes formed a single group, while the green bean accessions were distributed between the Andean and Mesoamerican groups, showing inter-gene pool genetic admixture. For a subset of 24 SSR markers, we compared and contrasted the genetic diversity of the commercial cultivars with those of wild and domesticated landrace accessions of common bean. An overall reduction in genetic diversity was observed in both gene pools, Andean and Mesoamerican, from wild to landraces to advanced cultivars. The limited diversity in the commercial cultivars suggests that an important goal of bean breeding programs should be to broaden the cultivated gene pool, particularly the genetic diversity of specific commercial classes, using the genetic variability present in common bean landraces.

Highlights

  • Common bean (Phaseolus vulgaris L.) is a crop plant cultivated worldwide and one of the most important grain legumes in terms of total yield and cultivated area (Food and Agriculture Organization of the United Nations (FAO) http://www.fao.org)

  • The marker BM53 showed the highest number of alleles (No = 22) while the highest allele numbers were found for BM200 (No = 20) and GATS91 (No = 18), respectively

  • New variability should be incorporated into the existing elite germplasm to face the challenges of the modern agriculture; landraces could be useful for this purpose. This is the first report of the analysis of genetic relationships among a large sample of common bean advanced cultivars widely grown in North America using simple-sequence-repeat markers (SSR) markers

Read more

Summary

Introduction

Common bean (Phaseolus vulgaris L.) is a crop plant cultivated worldwide and one of the most important grain legumes in terms of total yield and cultivated area (Food and Agriculture Organization of the United Nations (FAO) http://www.fao.org). It is grown for its green pods and immature and/or dry seeds and is a primary source of protein in the human diet in both developing and developed countries. Two highly differentiated domesticated gene pools were established that are characterized by geographical and partial reproductive barriers (for a review, see [4]). The Mesoamerican gene pool has greater genetic diversity compared to the Andean gene pool [12,13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call