Abstract

BackgroundSpliceosomal introns are an ancient, widespread hallmark of eukaryotic genomes. Despite much research, many questions regarding the origin and evolution of spliceosomal introns remain unsolved, partly due to the difficulty of inferring ancestral gene structures. We circumvent this problem by using genes originated by endosymbiotic gene transfer, in which an intron-less structure at the time of the transfer can be assumed.ResultsBy comparing the exon-intron structures of 64 mitochondrial-derived genes that were transferred to the nucleus at different evolutionary periods, we can trace the history of intron gains in different eukaryotic lineages. Our results show that the intron density of genes transferred relatively recently to the nuclear genome is similar to that of genes originated by more ancient transfers, indicating that gene structure can be rapidly shaped by intron gain after the integration of the gene into the genome and that this process is mainly determined by forces acting specifically on each lineage. We analyze 12 cases of mitochondrial-derived genes that have been transferred to the nucleus independently in more than one lineage.ConclusionsRemarkably, the proportion of shared intron positions that were gained independently in homologous genes is similar to that proportion observed in genes that were transferred prior to the speciation event and whose shared intron positions might be due to vertical inheritance. A particular case of parallel intron gain in the nad7 gene is discussed in more detail.

Highlights

  • Spliceosomal introns are an ancient, widespread hallmark of eukaryotic genomes

  • Many eukaryotic genes contain spliceosomal introns [1]: segments of non-coding sequences that are excised from the pre-mRNA by the spliceosome complex [2]

  • We find several instances of independent parallel transfers of genes. Comparing their ratio of shared intron positions to those of genes that vertically derive from a single transfer event, our results indicate that, for our set of genes, the proportion of shared intron positions between genes that were transferred independently on more than one occasion is similar to those that were transferred in a single event

Read more

Summary

Introduction

Many questions regarding the origin and evolution of spliceosomal introns remain unsolved, partly due to the difficulty of inferring ancestral gene structures. Spliceosomal introns have been found with huge varying rates in all sequenced eukaryotes and are absent in all prokaryotic genomes sequenced to date [3]. These findings have been discussed in the context of two alternative hypotheses. In accordance to the introns-late hypothesis, spliceosomal introns were supposed to originate from self-splicing group II introns during the evolution of eukaryotes [5]. This model is supported by similarities between group II introns and

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.