Abstract

Proliferation of internet and web applications has led to exponential growth of users and information over web. In such information overload scenarios, recommender systems have shown their prominence by providing user with information of their interest. Recommender systems provide item recommendation or generate predictions. Amongst the various recommendation approaches, collaborative filtering techniques have emerged well because of its wide item applicability. Model-based collaborative filtering techniques which use parameterised model for prediction are more preferred as compared to their memory-based counterparts. However, the existing techniques deals with static data and are less accurate over sparse, high dimensional data. In order to alleviate such issues, matrix factorisation techniques like singular value decomposition are preferred. These techniques have evolved from using simple user-item rating information to auxiliary social and temporal information. In this paper, we provide a comprehensive review of such matrix factorisation techniques and their applicability to different input data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.