Abstract
This study proposed the evolution of self-assembled amphiphilic colloidal particles in Strong-Flavor (SF) Baijiu based on Ostwald ripening for the first time. The evolution process occurs in two stages: disordered amphiphilic molecules self-assemble into small colloidal particles and subsequently undergo Oswald ripening to form larger hydrophobic particles. Microscopic observations revealed the average size of oil-like spherical colloidal particles in Baijiu increased from 1.86 μm to 2.96 μm while the number of particles decreased by 39.50% during the 16-year cellaring process of SF Baijiu, consistent with the particle size trend observed via laser scattering. During fusion process, the charge-to-mass ratio of positively charged colloidal particles decreased, leading ζ-potential decreased from 23.7 mV to 4.66 mV within 16 years of storage. The electrochemical impedance spectroscopy approach tracked the unidirectional variation in the dielectric constant during evolution of SF Baijiu, reflecting the gradual expansion of colloidal particles, which aligns with the evolution trend observed in molecular dynamics simulations. By integrating direct microscopic observations of amphiphilic colloidal particles with electrochemical techniques, the evolution of Baijiu samples is capable to be evaluated in-situ, laying the foundation for intelligent Baijiu aging monitoring technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.