Abstract

Legumes produce a high diversity of secondary metabolites which serve as defence compounds against herbivores and microbes, but also as signal compounds to attract pollinating and fruit-dispersing animals. As nitrogen-fixing organisms, legumes produce more nitrogen containing secondary metabolites than other plant families. Compounds with nitrogen include alkaloids and amines (quinolizidine, pyrrolizidine, indolizidine, piperidine, pyridine, pyrrolidine, simple indole, Erythrina, simple isoquinoline, and imidazole alkaloids; polyamines, phenylethylamine, tyramine, and tryptamine derivatives), non-protein amino acids (NPAA), cyanogenic glucosides, and peptides (lectins, trypsin inhibitors, antimicrobial peptides, cyclotides). Secondary metabolites without nitrogen are phenolics (phenylpropanoids, flavonoids, isoflavones, catechins, anthocyanins, tannins, lignans, coumarins and furanocoumarins), polyketides (anthraquinones), and terpenoids (especially triterpenoid, steroidal saponins, tetraterpenes). While some secondary metabolites have a wide distribution (flavonoids, triterpenes, pinitol), however, others occur in a limited number of taxa. The distributions of secondary metabolites with an irregular occurrence are mapped on a molecular phylogeny of the Fabaceae, reconstructed from a combined data set of nucleotide sequences from rbcL, matK and ITS genes. In most cases, the distribution patterns of secondary metabolites do not agree with the phylogeny of the plants producing them. In contrary, the distribution of many secondary metabolites is patchy and irregular. Thus, the use of phytochemical data to reconstruct a phylogeny of plants is often not informative and can be misleading. The patchy distribution may be due to convergent evolution, a contribution of endophytic fungi or more likely, to an early acquisition of the key genes of secondary metabolism in the evolution of land plants among others by horizontal gene transfer from bacteria. Thus it would be a matter of gene regulation whether these genes are active in some but not all taxa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call