Abstract

BackgroundA theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. However, no example of actual gene evolution has been reported that can be used to test this model. Here, we analyzed the molecular evolution of the ribonuclease H (RNase H) family in prokaryotes and used the results to examine the implications of functional redundancy for gene evolution.ResultsIn prokaryotes, RNase H has been classified into RNase HI, HII, and HIII on the basis of amino acid sequences. Using 353 prokaryotic genomes, we identified the genes encoding the RNase H group and examined combinations of these genes in individual genomes. We found that the RNase H group may have evolved in such a way that the RNase HI and HIII genes will not coexist within a single genome – in other words, these genes are inherited in a mutually exclusive manner. Avoiding the simultaneous inheritance of the RNase HI and HIII genes is remarkable when RNase HI contains an additional non-RNase H domain, double-stranded RNA, and an RNA-DNA hybrid-binding domain, which is often observed in eukaryotic RNase H1. This evolutionary process may have resulted from functional redundancy of these genes, because the substrate preferences of RNase HI and RNase HIII are similar.ConclusionWe provide two possible evolutionary models for RNase H genes in which functional redundancy contributes to the exclusion of redundant genes from the genome of a species. This is the first empirical study to show the effect of functional redundancy on changes in gene constitution during the course of evolution.

Highlights

  • A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together

  • ribonuclease H (RNase H) group may have evolved in such a way that the RNase HI and HIII genes will not coexist within a single genome – in other words, these genes are inherited in a mutually exclusive manner

  • We provide two possible evolutionary models for RNase H genes in which functional redundancy contributes to the exclusion of redundant genes from the genome of a species

Read more

Summary

Introduction

A theoretical model of genetic redundancy has proposed that the fates of redundant genes depend on the degree of functional redundancy, and that functionally redundant genes will not be inherited together. A recent analysis of 106 bacterial genomes revealed that a significant number of genetic redundancies have persisted in individual genomes [1], and systematic gene deletion experiments have demonstrated that approximately 300 out of 4000 genes are indispensable for two bacterial species, Escherichia coli [2] and Bacillus subtilis [3], suggesting the presence of considerable redundancy in the bacterial genome. The study described here aimed to substantiate the model of evolution of genetic redundancy on the basis of the analysis of a ribonuclease family that has contributed to our understanding of some aspects of molecular evolution, such as adaptive evolution [6,7], positive Darwinian selection [8], and the origin of retroviruses with long terminal repeats (LTR) [9].

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call