Abstract

AbstractThis work investigates the evolution of the rheological properties of elastomeric dynamically vulcanized ethylene‐α‐olefin copolymers (ECs) and their blends with polypropylene (PP), during peroxide initiated crosslinking. Rheological techniques are used in conjunction with gel content measurements to determine the onset of gelation during static crosslinking. The complex viscosity and moduli follow power‐law dependence with respect to frequency at the gel point. The relaxation exponent and corresponding values of tan δ at the gel point are determined from the complex viscosity versus frequency curves and used as criteria for the determination of the instance of gelation. The evolution of morphology of thermoplastic vulcanizate (TPV) blends consisting of EC and PP during dynamic crosslinking is discussed in the context of the evolving rheological properties of the matrix and the dispersed phase that take place upon peroxide modification. TPVs having the crosslinked EC as the matrix present a very fine morphology, whereas the blends containing crosslinked EC particles, present a coarser morphology. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.