Abstract

A prominent model for the evolution of placentation among Reptilia is based on placental structure among species in the Eugongylus group of Australian lygosomatine skinks. We studied the development of the extraembryonic membranes of an oviparous species, Bassiana duperreyi, and a viviparous species, Pseudemoia entrecasteauxii, within this taxonomic group. We observed differences in the timing of development of shared features and in the structure of extraembryonic membrane epithelia in the two species. In the viviparous species, there is earlier vascularization of the yolk sâc and increased vascular support for the abembryonic yolk sac splanchnopleure. Structural differences between species result in partitioning of the egg into two distinct hemispheres and produce epithelia which appear functionally histotrophic in both the chorioallantoic membrane and the bilaminar omphalopleure of the viviparous species. We propose that the evolution of placentation in P. entrecasteauxii involved a combination of heterochrony and structural innovation. Further, because our interpretation of placental structure of this species provides new information relevant to placental function, we propose a revision of a classic model for the evolution of placentation among Reptilia. This model predicts specific relationships among reproductive characteristics and thus is testable by comparative analysis among other species within the Eugongylus group of Australian skinks. © 1996 Wiley-Liss, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.