Abstract

SUMMARYTargeted cancer therapeutics select for drug-resistant rescue subclones (RSCs), which typically carry rescue mutations that restore oncogenic signaling. Whereas mutations underlying antibiotic resistance frequently burden drug-naive microbes with a fitness cost, it remains unknown whether and how rescue mutations underlying cancer relapse encounter negative selection prior to targeted therapy. Here, using mouse models of reversible, Wnt-driven mam-mary cancer, we uncovered stringent counter-selection against Wnt signaling overdose during the clonal evolution of RSCs. Analyzing recurrent tumors emerging during simulated targeted therapy (Wnt withdrawal) by multi-region DNA sequencing revealed polyclonal relapses comprised of multiple RSCs, which bear distinct but functionally equivalent rescue mutations that converge on sub-maximal Wnt pathway activation. When superimposed on native (i.e., undrugged) signaling, these rescue mutations faced negative selection, indicating that they burden RSCs with a fitness cost before Wnt withdrawal unmasks their selective advantage. Exploiting collateral sensitivity to oncogene overdose may help eliminate RSCs and prevent cancer relapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.