Abstract

Unlike evolution of genes and proteins, evolution of regulatory systems is a relatively new area of research. In particular, little systematic study has been done on evolution of DNA binding motifs in transcription factor families. We suggest an algorithm that reconstructs the most parsimonious scenario for changes in DNA binding motifs along an evolutionary tree of transcription factor binding sites. The algorithm was validated on several artificial datasets and then applied to reconstruct the evolutionary history of the NrdR, MntR, LacI, FNR, Irr, Fur and Rrf2 transcription factor families. The algorithm seems to be sufficiently robust to be applicable in realistic situations. In most transcription factor families the changes in binding motifs are limited to several branches. Changes in consensus nucleotides proceed via an intermediate stage when the respective position is not conserved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.