Abstract

We have monitored in situ the lattice defect evolution induced by proton irradiation in 20Cr-25Ni Nb-stabilised stainless steel, used as fuel cladding material in advanced gas-cooled reactors. At 420 °C, the damaged microstructure is mainly characterised by black spots and faulted a03〈111〉 Frank loops. Defect saturation is reached at only 0.1dpa. In contrast, at 460 °C and 500 °C proton bombardment induces the formation of a mixture of a03〈111〉 Frank loops and perfect a02〈110〉 loops. These perfect loops evolve into dislocation lines that form a dense network. This transition coincides with the saturation in the dislocation loop size and number density at 0.8dpa (460 °C) and 0.2dpa (500 °C), respectively. The presence of a high density of dislocation loops and lines at those two temperatures causes a vacancy supersaturation in the matrix, leading to the formation of voids and stacking fault tetrahedra.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.