Abstract

Computer science will be radically transformed if ongoing efforts to build large-scale quantum computers eventually succeed and if the properties of these computers meet optimistic expectations. Nevertheless, computer scientists still lack a thorough understanding of the power of quantum computing, and it is not always clear how best to utilize the power that is understood. This dilemma exists because quantum algorithms are difficult to grasp and even more difficult to write. Despite large-scale international efforts, only a few important quantum algorithms are documented, leaving many essential questions about the potential of quantum algorithms unanswered.These unsolved problems are ideal challenges for the application of automatic programming technologies. Genetic programming techniques, in particular, have already produced several new quantum algorithms and it is reasonable to expect further discoveries in the future. These methods will help researchers to discover how additional practical problems can be solved using quantum computers, and they will also help to guide theoretical work on both the power and limits of quantum computing.This tutorial will provide an introduction to quantum computing and an introduction to the use of evolutionary computation for automatic quantum computer programming. No background in physics or in evolutionary computation will be assumed. While the primary focus of the tutorial will be on general concepts, specific results will also be presented, including human-competitive results produced by genetic programming. Follow-up material is available from the presenter's book, Automatic Quantum Computer Programming: A Genetic Programming Approach, published by Springer and Kluwer Academic Publishers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.