Abstract
ABSTRACTMetal injection moulding (MIM) is an established process for high volume production of complex shaped metallic parts using commercially available feedstocks. The characteristics of parts after moulding, debinding, and sintering cannot be simply predictable from raw materials because the properties get altered with the process parameters and the corresponding levels of porosity during processing steps. In this study, physical properties, microstructure, and mechanical properties of the MIM parts have been characterised to understand the evolution of strength during various steps in MIM processing. Feedstocks with different binder loading show a considerable difference in physical as well as mechanical characteristics. During sintering of parts which have solid loading of grinding sludge, simultaneous in situ reduction and densification takes place, whereas only densification occurs in carbonyl iron parts. It is, therefore, possible to make complex shaped parts of different levels of porosity from downgraded shop floor metallic waste.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.