Abstract

The evolution of primary austenite morphology during isothermal coarsening has been studied in the three main Fe–C–Si alloys used in industry, LGI, CGI, and SGI. The dendritic microstructure increases length scale during coarsening accompanied by fragmentation and coalescence of austenite crystals. The morphological parameters, SDAS, Mγ, DIDhyd, and Dγ show a linear relation with the cube root of coarsening time, t1/3, with similar rates for the three different Fe–C–Si alloys. The eutectic microstructures after coarsening of primary austenite in CGI and SGI alloys are not significantly affected by the surface area of primary austenite and the size of the interdendritic regions. Fraction, nodularity, shape distribution of graphite particles and the number of nodules and eutectic cells are similar when studied as a function of coarsening time. These results suggest that the nucleation frequency in CGI and SGI, and the growth of eutectic microstructures in CGI, are not significantly influenced by the morphology of primary austenite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call