Abstract

The morphology and crystal structure of the precipitates in Mg−7Gd−3Y−1Nd−1Zn−0.5Zr (wt.%) alloy with fine plate-like 14H-LPSO structures aged at 240 °C were investigated using transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). Fine plate-like 14H-LPSO structures precipitate after heat treatment at 500 °C for 2 h, and β-type phases precipitate after the alloy is aged at 240 °C. The long-period atomic stacking sequence of 14H-LPSO structures along the [0001]α direction is ABABCACACACBABA. After being aged at 240 °C for 2 h, the β-type phases are the ordered solution clusters, zig-zag GP zones, and a small number of β′ phases. The peak hardness is obtained at 240 °C for 18 h with a Brinell hardness of 112, the β-type phases are β’ phases and local RE-rich structures. After being aged at 240 °C for 100 h, the β-type phases are β’, β1 and β’F phases. β′ phases nucleate from the zig-zag GP zones directly without β″ phases, and then transform into β1 phase by β’→β’F→β1 transformations. The Zn not only can form LPSO structure, but also is the constituent element of β1 phases. LPSO structures have a certain hindrance to the coarsening of β’ and β1 along 〈0001〉α.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.