Abstract

We report the observation of an anomalous polarization dependent process in an isotropic glass induced by long time stationary irradiation of a high repetition rate near-infrared femtosecond laser. Two distinctive types of polarization dependent microstructures were induced at different irradiation stages. At early stage (a few seconds), a dumbbell-shaped structure elongated perpendicularly to the laser polarization formed at the top of the modified region, which was later erased by further irradiation. At later stage (above 30 s), bubbles filled with O2 formed by the irradiation, which were distributed along the laser polarization at a distance far beyond the radius of the laser beam. Based on a simple modeling of light reflection on boundaries, a thermal accumulation process was proposed to explain the formation and evolution of the dumbbell-shaped microstructure. The possible factors responsible for polarization dependent distribution of bubbles are discussed, which needs further systematic investigations. The results may be helpful in the development of femtosecond laser microprocessing for various applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.