Abstract

Ferroelectric perovskites and polymers that are used in a variety of electronic, ultrasonic, and optical applications are often wide-band-gap semiconductors. We present a time-dependent and thermodynamically consistent theory that describes the evolution of polarization and space charges in such materials. We then use it to show that the semiconducting nature of ferroelectrics can have a profound effect on polarization domain switching, hysteresis, and leakage currents. Further, we show how hysteresis and leakage are affected by doping, film thickness, electrode work function, ambient temperature, and loading frequency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call