Abstract

Three-dimensional numerical simulations are performed to investigate the dynamics of deep-ocean convection. Organized structures of denser fluid moving downwards, known as plumes, are formed during the initial evolution. We propose a scaling for the diameter and velocity of these plumes based on surface flux magnitude and the thermal/eddy diffusivity. Rotation effects are found to be negligible during this initial evolution. At a later time , where is the Coriolis parameter, the flow comes under the influence of rotation, which stabilizes the flow by inhibiting the conversion of potential energy to turbulent kinetic energy. At moderate to low rotation rates, the dense fluid plummets and spreads laterally as a gravity current along the bottom boundary. However, at high rotation rates, the flow reaches a quasi-geostrophic state (before the dense fluid reaches the bottom boundary) with an approximate balance between the pressure gradient and the Coriolis forces. We also see the formation of baroclinic vortices and a rim current at the interface of the mixed and surrounding fluids at high rotation rates. A quantitative analysis of the root-mean-square velocities reveals that higher rotation rates result in lower turbulence intensities. Closure of the turbulent kinetic energy budget is also achieved with an approximate balance between the buoyancy flux and the dissipation rate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call