Abstract

A magnetic pole enhanced inductively coupled He-N2/Ar plasma is studied at low pressure, to monitor the effects of helium mixing on plasma parameters like electron number density (ne), electron temperature (Te), plasma potential (Vp) , and electron energy probability functions (EEPFs). An RF compensated Langmuir probe is employed to measure these plasma parameters. It is noted that electron number density increases with increasing RF power and helium concentration in the mixture, while it decreases with increase in filling gas pressure. On the other hand, electron temperature shows an increasing trend with helium concentration in the mixture. At low RF powers and low helium concentration in the mixture, EEPFs show a “bi-Maxwellian” distribution with pressure. While at RF powers greater than 50 W and higher helium concentration in the mixture, EEPFs evolve into “Maxwellian” distribution. The variation of skin depth with RF power and helium concentration in the mixture, and its relation with EEPF are also studied. The effect of helium concentrations on the temperatures of two electron groups ( Tbulk and Ttail) in the “bi-Maxwellian” EEPFs is also observed. The temperature of low energy electron group ( Tbulk) shows significant increase with helium addition, while the temperature of tail electrons ( Ttail) increases smoothly as compared to ( Tbulk).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.