Abstract
The study examines the effects of density inhomogeneity and differential rotation as well as inelastic collisions on the dynamical evolution of planetesimals. Consideration is given to a three-step analysis: the dynamical evolution of the planetesimals, collisions and mass accumulation, and interaction with gas. It is shown that the velocity dispersion of a cold system of planetesimals increases rapidly due to elastic gravitational scattering. When the dispersion in the epicycle amplitude becomes comparable to the planetesimals' Roche radius, energy is transferred from the systematic Keplerian shear to the dispersive motion. With a numerical N-body scheme, gravitational scattering and physical collisions among a system of planetesimals is simulated. It is shown that dynamical equilibrium is attained with a velocity dispersion comparable to the surface escape velocity of those planetesimals which contribute most of the system mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.