Abstract

We study the evolution of light quarks with isospin symmetry and the pion masses in the presence of a thermal bath and study their temperature dependence. In addition, we analyze the inclusion of a coupling with temperature dependence. We attempt to study the dissolution of bound-states at temperatures higher than the critical temperature, but we found that the model shows that the bound-state's mass increases. We base our study on a momentum-independent symmetry-preserving truncation scheme contact interaction in the Schwinger-Dyson equations framework.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.