Abstract

Peroxisome proliferator-activated receptor gamma (PPAR gamma) plays an important role in the control of energy balance and lipid and glucose homeostasis. Different transcript variants were investigated not only in human but also in other vertebrates. To look into the evolutionary changes of these variants, we analyzed the genomic sequences of PPAR gamma genes from several vertebrate species, as well as their mRNA and EST data. Several potential alternative splicing exons at the 5'-end of the PPAR gamma gene were identified. The 5'-end of the PPAR gamma gene is discovered to be evolutionarily active and recruits new exons via different strategies. Moreover, it is shown that the only coding alternative exon (exon B) processes much higher Ka/Ks compared with its constitutive counterparts. In addition, its Ka/Ks is greater than 1 in the rat, mouse, and rabbit, indicating adaptive evolution and possible energy storage related gain-of-function for the exon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.