Abstract
In recent years, the magnitude and frequency of regional ozone (O3) episodes have increased in China. We combined ground-based measurements, observation-based model (OBM), and the Weather Research and Forecasting and Community Multiscale Air Quality (WRF-CMAQ) model to analyze a typical persistent O3 episode that occurred across 88 cities in northeastern China during June 19-30, 2021. The meteorological conditions, particularly the wind convergence centers, played crucial roles in the evolution of O3 pollution. Daily analysis of the O3 formation sensitivity showed that O3 formation was in the volatile organic compound (VOC)-limited or transitional regime at the onset of the pollution episode in 92% of the cities. Conversely, it tended to be or eventually became a NOx-limited regime as the episode progressed in the most polluted cities. Based on the emission-reduction scenario simulations, mitigation of the regional O3 pollution was found to be most effective through a phased control strategy, namely, reduction of a high ratio of VOCs to NOx at the onset of the pollution and lower ratio during evolution of the O3 episode. This study presents a new possibility for regional O3 pollution abatement in China based on a reasonable combination of OBM and the WRF-CMAQ model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.