Abstract

The “Cambrian explosion” is one of the most fascinating episodes of diversification in the history of life; however, its relationship to the oxygenation of the oceans and atmosphere around the Ediacaran–Cambrian transition is not fully understood. Marine inventories of redox-sensitive trace elements reflect the relative balance of oxidative weathering on land and deposition in anoxic water masses, and can be used to explore the evolution of oceanic and atmospheric redox conditions. For this study, we conducted a series of geochemical analyses on the upper Lantian, Piyuancun, and Hetang formations in the Chunye-1 well, part of the lower Yangtze Block in western Zhejiang. Iron speciation results indicate that the entire studied interval was deposited under anoxic conditions, with three intervals of persistent euxinia occurring in the uppermost Lantian Fm., the lower Hetang Formation (Fm.), and the upper Hetang Fm. Molybdenum (Mo) and uranium (U) contents and Mo/TOC and U/TOC ratios from the anoxic/euxinic intervals of the Chunye-1 well, combined with published data from the sections in the middle and upper Yangtze Block, suggest that the oceanic Mo reservoir declined consistently from the Ediacaran to Cambrian Stage 3, while the size of the oceanic U reservoir remained relatively constant. Both metals were depleted in the ocean in lower Cambrian Stage 4, before increasing markedly at the end of Stage 4. The lack of an apparent increase in the size of the marine Mo and U reservoir from the upper Ediacaran to Cambrian Stage 3 suggests that oxic water masses did not expand until Cambrian Stage 4. The increase in marine Mo and U availability in the upper Hetang Fm. may have been due to the expansion of oxic water masses in the oceans, associated with oxygenation of the atmosphere during Cambrian Stage 4. This expansion of oxic waters in the global ocean postdates the main phase of Cambrian diversification, suggesting that pervasive oxygenation of the ocean on a large scale was not the primary control on animal diversity following the Ediacaran–Cambrian transition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call