Abstract

BackgroundMembers of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination. They are also central to various mRNA surveillance mechanisms, together with the eRF1 paralogue Dom34p and the eRF3 paralogues Hbs1p and Ski7p. We have examined the evolution of eRF1 and eRF3 families using sequence similarity searching, multiple sequence alignment and phylogenetic analysis.ResultsExtensive BLAST searches confirm that Hbs1p and eRF3 are limited to eukaryotes, while Dom34p and eRF1 (a/eRF1) are universal in eukaryotes and archaea. Ski7p appears to be restricted to a subset of Saccharomyces species. Alignments show that Dom34p does not possess the characteristic class-1 RF minidomains GGQ, NIKS and YXCXXXF, in line with recent crystallographic analysis of Dom34p. Phylogenetic trees of the protein families allow us to reconstruct the evolution of mRNA surveillance mechanisms mediated by these proteins in eukaryotes and archaea.ConclusionWe propose that the last common ancestor of eukaryotes and archaea possessed Dom34p-mediated no-go decay (NGD). This ancestral Dom34p may or may not have required a trGTPase, mostly like a/eEF1A, for its delivery to the ribosome. At an early stage in eukaryotic evolution, eEF1A was duplicated, giving rise to eRF3, which was recruited for translation termination, interacting with eRF1. eRF3 evolved nonsense-mediated decay (NMD) activity either before or after it was again duplicated, giving rise to Hbs1p, which we propose was recruited to assist eDom34p in eukaryotic NGD. Finally, a third duplication within ascomycete yeast gave rise to Ski7p, which may have become specialised for a subset of existing Hbs1p functions in non-stop decay (NSD). We suggest Ski7p-mediated NSD may be a specialised mechanism for counteracting the effects of increased stop codon read-through caused by prion-domain [PSI+] mediated eRF3 precipitation.

Highlights

  • Members of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination

  • At an early stage in eukaryotic evolution, eEF1A was duplicated, giving rise to eRF3, which was recruited for translation termination, interacting with eRF1. eRF3 evolved nonsense-mediated decay (NMD) activity either before or after it was again duplicated, giving rise to Hbs1p, which we propose was recruited to assist eDom34p in eukaryotic no-go decay (NGD)

  • A third duplication within ascomycete yeast gave rise to Ski7p, which may have become specialised for a subset of existing Hbs1p functions in non-stop decay (NSD)

Read more

Summary

Introduction

Members of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination. These proteins are involved in translation termination [1,2] Both eRF1 and eRF3 are key players in mRNA quality control surveillance mechanisms, as are their paralogues Dom34p in the case of eRF1, and Hbs1p and Ski7p in the case of eRF3 [3,4,5,6]. Involvement of these proteins in two different cellular systems and differences in substrate specificity among family members make them interesting candidates for in silico comparative analyses. Class-2 RFs (aRF3 and RF3) are GTPases that assist class-1 RFs in this process

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call