Abstract

To study the evolution of non-metallic inclusions in 27SiMn steel, the 27SiMn steel produced using the LD-LF-CCM process was sampled in various stages in a steel factory. The evolutionary behavior of inclusion in various processes was systematically analyzed by scanning electron microscopy (SEM-EDS), and the total oxygen content and nitrogen content in 27SiMn steel were measured at various production steps. On the basis of the calcium treatment for 27SiMn steel, the equilibrium reactions for Ca-Al were calculated according to the thermodynamic equilibrium model. The results showed that the types of inclusions at the start of LF stations are mainly Al2O3-FeO and MnS-Al2O3. Before calcium treatment, the inclusions are mostly calcium aluminate and CaO-MgO-Al2O3. Compared with the process after soft blowing, the number density of inclusions in tundish increased by 77.88%, possibly due to secondary oxidation. From the soft blowing process to the continuous casting round billet, the inclusions translate into spherical CaO-MgO-Al2O3-SiO2, and a large number of CaS were observed. One part of the CaS precipitated separately, the other part was semi-wrapped with the composite inclusions. At the same time, calcium treatment increases the number density, mean diameter, and the area fraction of inclusions. The mass fraction of T.O. (total oxygen content) increased significantly after soft blowing, and the N content increased greatly from station to tundish. The change trend of N content in steel was basically consistent with that of T.O. content. It was necessary to prevent the secondary oxidation of molten steel during calcium treatment and the casting process. When the liquidus temperature of liquid steel is 1873 K, w[Al] = 0.022%, and w[Ca] in steel is controlled between 1.085 × 10−6 and 4.986 × 10−6, the Al2O3 inclusion degeneration effect is good.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.