Abstract
Myocardial diastolic function assessment in children by conventional echocardiography is challenging. High-frame rate echocardiography facilitates the assessment of myocardial stiffness, a key factor in diastolic function, by measuring the propagation velocities of myocardial shear waves (SWs). However, normal values of natural SWs in children are currently lacking. The aim of this study was to explore the behavior of natural SWs among children and adolescents, their reproducibility, and the factors affecting SW velocities from childhood into adulthood. One hundred six healthy children (2-18years of age) and 62 adults (19-80years of age) were recruited. High-frame rate images were acquired using a modified commercial scanner. An anatomic M-mode line was drawn along the ventricular septum, and propagation velocities of natural SWs after mitral valve closure were measured in the tissue acceleration-coded M-mode display. Throughout life, SW velocities after mitral valve closure exhibited pronounced age dependency (r=0.73; P<.001). Among the pediatric population, SW velocities correlated significantly with measures of cardiac geometry (septal thickness and left ventricular end-diastolic dimension), local hemodynamics (systolic blood pressure), and echocardiographic parameters of systolic and diastolic function (global longitudinal strain, mitral E/e' ratio, isovolumic relaxation time, and mitral deceleration time) (P<.001). In a multivariate analysis including all these factors, the predictors of SW velocities were age, mitral E/e', and global longitudinal strain (r=0.81). Natural myocardial SW velocities in children can be detected and measured. SW velocities showed significant dependence on age and diastolic function. Natural SWs could be a promising additive tool for the assessment of diastolic function among children.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the American Society of Echocardiography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.