Abstract

Nanocrystalline graphite (NCG) layers represent a good alternative to graphene for the development of various applications, using large area, complementary metal-oxide semiconductor (CMOS) compatible technologies. A comprehensive analysis of the physical properties of NCG layers—grown for different time periods via plasma-enhanced chemical vapour deposition (PECVD)—was conducted. The correlation between measured properties (thickness, optical constants, Raman response, electrical performance, and surface morphology) and growth time was established to further develop various functional structures. All thin films show an increased grain size and improved crystalline structure, with better electrical properties, as the plasma growth time is increased. Moreover, the spectroscopic ellipsometry investigations of their thickness and optical constants, together with the surface roughness extracted from the atomic force microscopy examinations and the electrical properties resulting from Hall measurements, point out the transition from nucleation to three-dimensional growth in the PECVD process around the five-minute mark.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.