Abstract

Translational-rotational motion of two viscoelastic planets in a gravitational force field is studied. The planets are modeled by homogeneous isotropic viscoelastic bodies. In their natural undeformed state each of the planets represents a sphere. We investigate a specific case when the planet’s centers of mass move in a fixed plane, the axis of rotation for each planet being directed along the normal to this plane. An equation describing the evolution of a slow angular variable (perihelion longitude) is derived. The observed displacement of the perihelion of Mercury is compared with the results obtained in the considered model problem about motion of two viscoelastic planets. Quite important is the fact that the planet of smaller mass (Mercury) moves not in a central Newtonian field of forces, but rather in the gravitational field of a rotating viscoelastic planet (Sun).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call