Abstract

Molecular imprinting represents one of the most promising strategies to design artificial enzyme inhibitors. However, the study of molecularly imprinted enzyme inhibitors (MIEIs) remains at a primary stage. Advanced applications of MIEIs for cell regulation have rarely been explored. Using a solid-phase oriented imprinting strategy so as to leave the active site of the enzymes accessible, we synthesized two MIEIs that exhibit high specificity and potent inhibitory effects (inhibition constant at low nM range) towards trypsin and angiogenin. The trypsin MIEI inhibits trypsin activity, tryptic digestion-induced extracellular matrix lysis and cell membrane destruction, indicating its utility in the treatment of active trypsin-dependent cell injury. The angiogenin MIEI blocks cancer cell proliferation by suppressing the ribonuclease activity of angiogenin and decreasing the angiogenin level inside and outside HeLa cells. Our work demonstrates the versatility of MIEIs for both enzyme inhibition and cell fate manipulation, showing their great potential as therapeutic drugs in biomedicine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.