Abstract

The detection of microwave states is complicated by strong thermal noise, which is inevitably introduced by linear amplifiers. We show how to extract from measured data normally or anti-normally ordered moments of photon creation and annihilation operators, the set of which contains complete information on the quantum state of an electromagnetic field. Equations for the evolution of the quantum state are derived in terms of moments. Using this approach, we consider in detail issues of decoherence and thermalization of microwave quantum states. Results are illustrated using the examples of Fock, coherent, squeezed, thermal, and even and odd coherent states (Schrodinger cat states).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call