Abstract
In this study, the microstructures and mechanical properties of the as-extruded and as-aged Mg-1.4Gd-1.2Y-0.4Zn-0.5Al (at.%) sheets with two extrusion ratios (ERs) of 10 and 22 have been studied. During the extrusion process, the 18R LPSO structure goes through the process of kink deformation, breaking into pieces, bending-delamination, finally separating and kink again. The as-extruded sheet with ER of 22 exhibits smaller dynamically recrystallized grains and weaker basal texture. Different extrusion ratios play little effect on the aging process. Dense nano-scaled β′ phase precipitates from the α-Mg matrix, resulting in significant precipitation strengthening. The as-aged sheet with ER of 22 exhibits the higher comprehensive mechanical property, where the ultimate tensile strength, yield strength, and tensile elongation to failure are 440 MPa, 328 MPa and 7.0%, respectively. The enhanced strength is mainly attributed to the thin strip-shaped 18R LPSO structure distributed along the grain boundaries, which can effectively refine the grains and strengthen the alloy by acting as reinforcing fibers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.