Abstract

Welding thermal simulation was performed to investigate the effects of boron content (0, 60, and 130 ppm), welding peak temperature (Tp), and cooling time from 800 to 500 °C (t8/5) on the microstructure, carbide, subgrain, and microhardness of heat-affected zone (HAZ) in G115 steel. According to the experimental results, the microstructure of coarse-grained HAZ (CGHAZ), fine-grained HAZ (FGHAZ), inter-critical HAZ (ICHAZ), and sub-critically HAZ (SCHAZ) was martensite, martensite containing a small amount of undissolved carbide, martensite, and over-tempered martensite, tempered martensite, respectively. The presence of B element improved the thermal stability of M23C6 carbide, thereby resulting in a greater amount of undissolved carbides with a larger diameter in the materials with higher B content under the same Tp. Element B is effective in improving Ac1 and Ac3 for the material. Besides, compared with the material without and containing 60 ppm B, the Ac1 and Ac3 of the material containing 130 ppm B increased by 95 and 108 °C, 69 and 77 °C, respectively. Meanwhile, the FGHAZ area of the material containing 130 ppm B was significantly lower than the material without or containing 60 ppm B, indicating that element B can significantly reduce the formation range of FGHAZ. The alloy content in austenite of ICHAZ of materials without or containing 60 ppm B increased, compared with CGHAZ, its Ms and Mf declined by 50 and 7 °C, 46 and 7 °C, respectively. In contrast, the alloy content in austenite of the material with 130 ppm B content decreases, its Ms and Mf was 37 °C and 32 °C higher than CGHAZ, respectively. The microhardness of HAZ was ranked in descending order as CGHAZ, FGHAZ, ICHAZ, and SCHAZ. Differently, the microhardness of CGHAZ and FGHAZ showed an increasing trend with the rise of B content but exhibited a decreasing trend with the rise of t8/5.

Highlights

  • IntroductionCompared with the costly nickel-based superalloys, 9%Cr martensitic heat-resistant steel has been widely applied in various settings due to its better cost-effectiveness and practicability

  • The results showed that heat-affected zone (HAZ) had an obvious change in grain size

  • M23 C6 carbide with a diameter of 90–140 nm and the round V/Nb-rich MX carbonitride with a diameter of 50–70 nm constitute the main strengthening phases that play a vital role in maintaining the high-temperature creep properties of the material

Read more

Summary

Introduction

Compared with the costly nickel-based superalloys, 9%Cr martensitic heat-resistant steel has been widely applied in various settings due to its better cost-effectiveness and practicability. P/T91 and P/T92 are the typical materials used in ultrasupercritical power generating units, the upper limit of service temperature of which is roughly 628 ◦ C [1,2]. The improvement to steam parameters of thermal power generating units enhances the efficiency of power generation. It can reduce coal consumption and carbon emissions, which have been burgeoning in many countries around the world. The new heat-resistant steel used in 630–650 ◦ C ultra-supercritical generating units is the priority for development currently [3,4].

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call