Abstract

Sol-gel materials of TiO2 and vanadium-modified TiO2 of nominal composition 4, 8, and 16 wt.% vanadium were prepared by evaporation of aqueous colloidal sols obtained by the hydrolysis of aqueous solutions of titanium(IV) chloride with the appropriate amount of vanadyl oxalate using aqueous ammonia followed by peptization of the resulting hydrated solids using nitric acid. The nature of the sol-gel materials and their behavior on calcinations at temperatures up to 1273 K were investigated using x-ray fluorescence, powder x-ray diffraction, transmission electron microscopy, and electron diffraction and FT-Raman spectroscopy. At 333 K, all the gels comprised small (about 5 ± 1 nm) particles of anatase together with traces of brookite. The particle size changed little on thermal treatment at 573 K, but increased significantly at higher temperatures and was accompanied by transformation to rutile. Incorporation of vanadium in the gels reduced the temperature at which rutile began to appear from 923 K in pure TiO2 to 773 K in the V/TiO2 gels. Only rutile was present at high temperatures, except for the 16 V/TiO2 gel, when small amounts of phase-separated vanadia were also observed. A 2–3% substitutional incorporation of V4+ ions in the tetragonal rutile lattice occurred at high temperatures, but the majority of the vanadium was present in an amorphous, highly dispersed fashion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.