Abstract

The evolution of microstructure and texture for drawn polycrystalline Ag was investigated by transmission electron microscopy and electron backscattering diffraction. The results show that there are deformation twins and some un-tangled discrete dislocations at low strains. When the strain is increased to 0.58, a lot of high density dislocation walls and microbands come into being. At the same time, some twins lose the twinning relationship of 60° . At a strain of 0.94, both dislocation boundaries and twin boundaries will rotate to the axis direction of wires and the shear bands start to appear. When the strain is higher than 1.96, most of the boundaries are parallel to the drawn direction. Texture analysis indicates that with the strain increasing, the volume fraction of complex texture component decreases, but and texture components increase. However, the variation in the volume fraction of each texture component as strains is not evident when the strains are higher than 0.58. For polycrystalline Ag with low stacking fault energy, complex texture components are easily formed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.