Abstract

Ni–Co alloy coating is applied to crystallizer surface to enhance its wear resistance for continuous steel casting. This study investigated the effects of heating temperature on the hardness, strength, and elongation of Ni–21wt.% Co coatings obtained by electroplating. The evolution of microstructure was analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results indicated that the as-deposited coating had a mixed structure of nanocrystals and microcrystals, containing numerous nanotwins and stacking faults. Its hardness, tensile strength, yield strength, and elongation were 371 HV0.1, 1170MPa, 1117MPa, and 13.8%, respectively. After low-temperature heating, the number of nanocrystals decreased, whereas the fraction of microcrystals increased. At heating temperatures of 100–200 °C, a reverse Hall–Petch phenomenon occurred owing to the formation of annealing twins and the transformation of dislocation-emission mechanisms, resulting in a stable hardness and tensile strength. As the heating temperature was further increased, the grains continuously grew, thereby decreasing the hardness and tensile strength. After annealed at 400 °C, the elongation reached 32.5%, whereas the hardness, tensile strength, and yield strength decreased to 200 HV0.1, 662MPa, and 577MPa, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.