Abstract

The microstructure and mechanical properties of cold sprayed aluminum coatings on copper substrates were studied in this paper. The impact and deposition mechanisms of single and multiple particles during cold spraying were investigated using finite element modeling. The results of single particle model show that the maximum equivalent plastic strain is located at the contact surface between particle and substrate, decreasing from the jet site to the center of particles, and the equivalent plastic strain at the top of particles is almost zero. The results of multi-particle model show that the regions with large equivalent plastic strain include the contact surface between particle and substrate and the region between particles. The experimental results show that particle deposition has a significant impact on compaction during the spraying process. When the spraying distance is set to a fixed value of 30 mm, and the gas pressure is 2.2 MPa, 2.6 MPa, 3.0 MPa and 3.4 MPa, the coating porosity is always stable at about 1 %. The bonding strength of coating increases with the increase of gas pressure. When the gas pressure increases from 2.2 MPa to 3.4 MPa, the coating bonding strength has increased by 142.0 %, and the maximum value of bonding strength between the coating and the substrate is 16.9 MPa. When the gas pressure is 3.4 MPa with the gas preheating temperature of 300 °C, and the spraying distance is 20 mm, 30 mm and 40 mm, the coating porosity is 1.74 %, 0.95 % and 1.21 %, respectively. The maximum value of bonding strength between the coating and the substrate is 21.3 MPa under the spraying distance of 30 mm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.