Abstract

The Fe80−xNi20Six (x=0, 5, and 10) nanocrystalline soft magnetic powders were successfully prepared via mechanical alloying (MA) route in a planetary ball mill at different milling times. The evolution of the microstructure, phase analysis, and magnetic properties during the milling process was studied using scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), and a vibrating sample magnetometer (VSM). SEM observations indicated that different morphologies were obtained during the MA stages. XRD results showed that an α–(Fe (Ni–Si)) solid solution was formed after 10h of MA and an estimated crystallite size for the Fe80Ni20 alloy after 36h of MA was about 14nm, which this size was reduced to about 6nm after the addition of 10at.% Si. An increase in lattice strain was observed by increasing the milling time and Si concentration. The VSM analysis indicated that a higher amount of Si would lead to lower values of saturation magnetization. In addition, coercivity increased during MA, reaching a maximum at 10h of MA, and finally decreased with further MA times. This latter effect could be attributed to the effect of very fine crystallite size, obtained after prolonged milling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.