Abstract

Graphene is a unique two-dimensional material with rich new physics and great promise for applications in electronic devices. Physical phenomena such as the half-integer quantum Hall effect and high carrier mobility are critically dependent on interactions with impurities/substrates and localization of Dirac fermions in realistic devices. We microscopically study these interactions using scanning tunneling spectroscopy (STS) of exfoliated graphene on a SiO2 substrate in an applied magnetic field. The magnetic field strongly affects the electronic behavior of the graphene; the states condense into welldefined Landau levels with a dramatic change in the character of localization. In zero magnetic field, we detect weakly localized states created by the substrate induced disorder potential. In strong magnetic field, the two-dimensional electron gas breaks into a network of interacting quantum dots formed at the potential hills and valleys of the disorder potential. Our results demonstrate how graphene properties are perturbed by the disorder potential; a finding that is essential for both the physics and applications of graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.