Abstract

Since thin film composite (TFC) hollow fiber (HF) membranes may experience micro-deformation under high hydraulic pressures in the pressure retarded osmosis (PRO) process due to their polymeric nature and self-supported configuration, this paper aims to elucidate (1) the micro-deformation of polyethersulfone (PES) TFC HF membranes within the pressure range from 0 to 20bar and (2) its effects on water and salt permeability of the polyamide layer, and structure parameter and tortuosity of the substrate layer for osmotic power generation. It is found that pre-stabilization of the TFC HF membranes at a high pressure close to their burst pressures for a certain period of time is a powerful way to maximize their PRO performance. After stabilization at 20bar for 30min, the power density of the PES TFC HF membranes increase from 15.37 to 22.05W/m2 due to the increased membrane surface area, stretched polyamide selective layer (i.e., decreased water transport length and resistance) and decreased membrane structure parameter (i.e., lower tortuosity and internal concentration polarization (ICP)). The intermittent cycle tests have confirmed the sustainability of the enhanced water flux and power density after stabilization of the TFC HF membranes at 20bar without compromising their selectivity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.