Abstract

BackgroundThe Euglenozoa are a protist group with an especially rich history of evolutionary diversity. They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and particularly the transition from free-living to parasitic, likely require different metabolic capabilities. We carried out a comparative genomic analysis across euglenozoan diversity to see how changing repertoires of enzymes and structural features correspond to major changes in lifestyles.ResultsWe find a gradual loss of genes encoding enzymes in the evolution of kinetoplastids, rather than a sudden decrease in metabolic capabilities corresponding to the origin of parasitism, while diplonemids and euglenids maintain more metabolic versatility. Distinctive characteristics of molecular machines such as kinetochores and the pre-replication complex that were previously considered specific to parasitic kinetoplastids were also identified in their free-living relatives. Therefore, we argue that they represent an ancestral rather than a derived state, as thought until the present. We also found evidence of ancient redundancy in systems such as NADPH-dependent thiol-redox. Only the genus Euglena possesses the combination of trypanothione-, glutathione-, and thioredoxin-based systems supposedly present in the euglenozoan common ancestor, while other representatives of the phylum have lost one or two of these systems. Lastly, we identified convergent losses of specific metabolic capabilities between free-living kinetoplastids and ciliates. Although this observation requires further examination, it suggests that certain eukaryotic lineages are predisposed to such convergent losses of key enzymes or whole pathways.ConclusionsThe loss of metabolic capabilities might not be associated with the switch to parasitic lifestyle in kinetoplastids, and the presence of a highly divergent (or unconventional) kinetochore machinery might not be restricted to this protist group. The data derived from the transcriptomes of free-living early branching prokinetoplastids suggests that the pre-replication complex of Trypanosomatidae is a highly divergent version of the conventional machinery. Our findings shed light on trends in the evolution of metabolism in protists in general and open multiple avenues for future research.

Highlights

  • The Euglenozoa are a protist group with an especially rich history of evolutionary diversity

  • Phylogenomic analysis We inferred orthologous groups (OGs) for a set of proteins encoded in 19 protist genomes and transcriptomes, including three euglenid and three diplonemid transcriptomes, seven genomes and five transcriptomes of kinetoplastids, and the genome of Naegleria gruberi as an outgroup (Additional file 1: Table S1)

  • The most thoroughly studied kinetoplastid clade, we have included the sequences of Paratrypanosoma confusum and Trypanosoma grayi, which emerged as the slowest-evolving trypanosomatids in a recent study [48], along with genomes of model organisms Trypanosoma brucei, Leishmania major, and Leptomonas pyrrhocoris [49,50,51]

Read more

Summary

Introduction

The Euglenozoa are a protist group with an especially rich history of evolutionary diversity They include diplonemids, representing arguably the most species-rich clade of marine planktonic eukaryotes; trypanosomatids, which are notorious parasites of medical and veterinary importance; and free-living euglenids. These different lifestyles, and the transition from free-living to parasitic, likely require different metabolic capabilities. Euglenids use paramylon (β(1,3)-glucan polysaccharide) as their storage compound (in contrast, for example, to starch and glycogen as major storage polysaccharides in plants and animals respectively) They include bacteriovorous (e.g., Petalomonas), eukaryovorous (e.g., Peranema), osmotrophic (e.g., Rhabdomonas), and photosynthetic lineages (e.g., Euglena) [8]. No transcriptome or genomic data are publicly available for this group

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call