Abstract
In the present study the role of horizontal gene transfer events in providing the mercury resistance is depicted. merA is key gene in mer operon and has been used for this study. Phylogenetic analysis of aligned merA sequences shows broad similarities to the established 16S rRNA phylogeny. But there is no separation of bacterial merA from archael merA which suggests that merA gene in both these groups share considerable sequence homology. However, inconsistencies between merA and 16S rRNA gene phylogenetic trees are apparent for some taxa. These discrepancies in the phylogenetic trees for merA gene and 16S rRNA gene have lead to the suggestion that horizontal gene transfer (HGT) is a major contributor for its evolution. The close association among members of different groups in merA gene tree, as supported by high bootstrap values, deviations in GC content and codon usage pattern indicate the possibility that horizontal gene transfer events might have taken place during the evolution of this gene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.