Abstract

We present a study of the resolved star-forming properties of a sample of distant massive M_*>10^11M_solar galaxies in the GOODS NICMOS Survey (GNS). We derive dust corrected UV star formation rates (SFRs) as a function of radius for 45 massive galaxies within the redshift range 1.5<z<3 in order to measure the spatial location of ongoing star formation. We find that the star formation rates present in different regions of a galaxy reflect the already existent stellar mass density, i.e. high density regions have higher star formation rates than lower density regions, on average. This observed star formation is extrapolated in several ways to the present day, and we measure the amount of new stellar mass that is created in individual portions of each galaxy to determine how the stellar mass added via star formation changes the observed stellar mass profile, the Sersic index (n) and effective radius (R_e) over time. We find that these massive galaxies fall into three broad classifications of star formation distribution. These different star formation distributions increase the effective radii over time, which are on average a factor of ~16pm5% larger, with little change in n (average Delta n=-0.9pm0.9) after evolution. We also implement a range of simple stellar migration models into the simulated evolutionary path of these galaxies in order to gauge its effect on the properties of our sample. This yields a larger increase in the evolved R_e than the pure static star formation model, with a maximum average increase of Delta R_e~54pm19%, but with little change in n, Delta n ~-1.1pm1.3. These results are not in agreement with the observed change in the R_e and n between z~2.5 and 0 obtained via various observational studies. We conclude that star formation and stellar migration alone cannot account for the observed change in structural parameters for this galaxy population (abridged).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.