Abstract
Binding of radioactive thyroxine to proteins in the plasma of vertebrates was studied by electrophoresis followed by autoradiography. Albumin was found to be a thyroxine carrier in the blood of all studied fish, amphibians, reptiles, monotremes, marsupials, eutherians (placental mammals), and birds. Thyroxine binding to transthyretin was detected in the blood of eutherians, diprotodont marsupials, and birds, but not in blood from fish, toads, reptiles, monotremes, and Australian polyprotodont marsupials. Globulins binding thyroxine were only observed in the plasma of some mammals. Apparently, albumin is the phylogenetically oldest thyroxine carrier in vertebrate blood. Transthyretin gene expression in the liver developed in parallel, and independently, in the evolutionary lineages leading to eutherians, to diprotodont marsupials, and to birds. In contrast, high transthyretin mRNA levels, strong synthesis, and secretion of transthyretin in choroid plexus from reptiles and birds indicate that transthyretin gene expression in the choroid plexus evolved much earlier than in the liver, probably at the stage of the stem reptiles. NH2-terminal sequence analysis suggests a change of transthyretin pre-mRNA splicing during evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.