Abstract

Measurement-induced phase transitions are the subject of intense current research, both from an experimental and a theoretical perspective. We explore the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom (implemented using two additional sites), on which projective measurements are performed. We analyze the effect of repeated (``stroboscopic'') measurements on the dynamical correlations of interacting hard-core bosons in a one-dimensional chain. An important distinctive ingredient of the protocol is the fact that the detector ancillae are not reinitialized after each measurement step. The detector thus maintains memory of the accumulated influence by the measured correlated system. Initially, we consider a model in which the ancilla is coupled to a single lattice site. This setup allows obtaining information about the system through Rabi oscillations in the ancillary degrees of freedom, modulated by the ancilla-system interaction. The statistics of quantum trajectories exhibits a ``quantum-Zeno-valve effect'' that occurs when the measurement becomes strong, with sharp branching between low and high entanglement. We proceed by extending numerical simulations to the case of two ancillae and, then, to measurements on all sites. With this realistic measurement apparatus, we find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models. The dynamics features a broad distribution of the entanglement entropy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call