Abstract

Chromosomes are likely to have assembled from unlinked genes in early evolution. Genetic linkage reduces the assortment load and intragenomic conflict in reproducing protocell models to the extent that chromosomes can go to fixation even if chromosomes suffer from a replicative disadvantage, relative to unlinked genes, proportional to their length. Here we numerically show that chromosomes spread within protocells even if recurrent deleterious mutations affecting replicating genes (as ribozymes) are considered. Dosage effect selects for optimal genomic composition within protocells that carries over to the genic composition of emerging chromosomes. Lacking an accurate segregation mechanism, protocells continue to benefit from the stochastic corrector principle (group selection of early replicators), but now at the chromosome level. A remarkable feature of this process is the appearance of multigene families (in optimal genic proportions) on chromosomes. An added benefit of chromosome formation is an increase in the selectively maintainable genome size (number of different genes), primarily due to the marked reduction of the assortment load. The establishment of chromosomes is under strong positive selection in protocells harboring unlinked genes. The error threshold of replication is raised to higher genome size by linkage due to the fact that deleterious mutations affecting protocells metabolism (hence fitness) show antagonistic (diminishing return) epistasis. This result strengthens the established benefit conferred by chromosomes on protocells allowing for the fixation of highly specific and efficient enzymes.

Highlights

  • No extant living organism can survive without the replication of its genetic information contained in chromosomes

  • The emergence of chromosomes harboring several genes is a crucial ingredient of the major evolutionary transition from naked replicators to cells

  • The emerging organization of protocells maintaining several segregating chromosomes with balanced gene composition allows for an increase in the number of gene types despite recurrent deleterious mutations

Read more

Summary

Introduction

No extant living organism can survive without the replication of its genetic information contained in chromosomes. Because the genetic information within ancient protocells was likely segmented [2], unlinked replicators competed among themselves for shared resources because their relative growth rates were not under the control of the protocell. This imposed a first level of selection due to the internal competition of replicators that functioned for their own good [8]. Clonal selection guaranteed that those protocell lineages hosting cooperative genes would proliferate and eventually take over [5]. High redundancy increases the mutational load and eventually pushes the population towards extinction [10]. At some point in time the linkage of genes in one continuous chromosome occurred [6,13], but it is still unclear how this could have happened

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call