Abstract

BackgroundKnowledge regarding the biomechanics of the meniscus has grown exponentially throughout the last four decades. Numerous studies have helped develop this knowledge, but these studies have varied widely in their approach to analyzing the meniscus. As one of the subcategories of mechanical phenomena Medical Subject Headings (MeSH) terms, mechanical stress was introduced in 1973. This study aims to provide an up-to-date chronological overview and highlights the evolutionary comprehension and understanding of meniscus biomechanics over the past forty years.MethodsA literature review was conducted in April 2021 through PubMed. As a result, fifty-seven papers were chosen for this narrative review and divided into categories; Cadaveric, Finite element (FE) modeling, and Kinematic studies.ResultsInvestigations in the 1970s and 1980s focused primarily on cadaveric biomechanics. These studies have generated the fundamental knowledge basis for the emergence of FE model studies in the 1990s. As FE model studies started to show comparable results to the gold standard cadaveric models in the 2000s, the need for understanding changes in tissue stress during various movements triggered the start of cadaveric and FE model studies on kinematics.ConclusionThis study focuses on a chronological examination of studies on meniscus biomechanics in order to introduce concepts, theories, methods, and developments achieved over the past 40 years and also to identify the likely direction for future research. The biomechanics of intact meniscus and various types of meniscal tears has been broadly studied. Nevertheless, the biomechanics of meniscal tears, meniscectomy, or repairs in the knee with other concurrent problems such as torn cruciate ligaments or genu-valgum or genu-varum have not been extensively studied.

Highlights

  • Study selection A literature review was conducted through PubMed (National Library of Medicine and National Institute of Health, USA) in April 2021, focusing on evaluating stress for meniscal tissue

  • To most efficiently explore this topic, this review focused on the three following characterizations of biomechanical investigation types: (1) Cadaveric, (2) Finite element (FE) Analysis, and (3) Kinematic investigations

  • This study showed the relative immobility of the posterior horn of the medial meniscus during application of tibial torque, and that the posterior displacement of the pathway on the tibial plateau throughout flexion from 0° to 30° may be restricted by the attached knee-joint capsule or the femoral condyle [17]

Read more

Summary

Results

Investigations in the 1970s and 1980s focused primarily on cadaveric biomechanics. These studies have generated the fundamental knowledge basis for the emergence of FE model studies in the 1990s. As FE model studies started to show comparable results to the gold standard cadaveric models in the 2000s, the need for understanding changes in tissue stress during various movements triggered the start of cadaveric and FE model studies on kinematics

Conclusion
Background
Main text
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.