Abstract

The evolution of the internal granular structure in shear-arrested and shear-flowing states of granular materials is characterized using fabric tensors as descriptors of the internal contact and force networks. When a dilute system of frictional grains is subjected to a constant pressure and shear stress, the bulk stress ratio is well-predicted from the anisotropy of its contact and force networks during transient flow prior to steady shear flow or shear arrest. Although the onset of shear arrest is a stochastic process, the fabric tensors upon arrest are distributed around nearly equal contributions of force and contact network anisotropy to the bulk stress ratio. The distribution becomes seemingly narrower with increasing system size. The anisotropy of the contact network in shear-arrested states is reminiscent of the fabric anisotropy observed in shear-jammed packings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.