Abstract

Thermal barrier coating (TBCs) are ceramic coatings that are deposited on metallic substrates to provide high thermal resistance. Residual stress is among the critical factors that affect the performance of TBCs. It evolves during the process of coating deposition and in-service loading. High residual stresses result in significant cracking and premature delamination of the TBC layer. In the present study, a hybrid computational approach is used to predict the evolution of internal cracks and residual stress in TBC. Smooth particle hydrodynamics (SPH) is first used to model the deposition of yttria-stabilized zirconia (YSZ) layer that contains various interfaces and micropores on a steel substrate. Then, three-dimensional (3D) finite element analysis is utilized to predict the evolution of internal cracks and residual stress in the ceramic coating layer. It is found that multiple cracks emerge during the solidification of the coating layer due to the development of high tensile (quenching) stresses. The cracking density is higher at regions near the coating interface. It is also found that compressive (residual) stresses are developed when the deposited coating is cooled to room temperature. The residual stress state is equibiaxial and nonlinear across the thickness/width of the TBC layer. The residual stress profile predicted compares well with that of hole drilling experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.